Enseignement


Compléments première année - ENS Rennes

Des sommes de Riemann à l'intégrale de Young

Dans ces notes, je présente différentes notions d'intégration en prenant comme point de départ les sommes de Riemann. Je commence par construire les intégrales de Riemann et de Stieltjes puis je généralise avec l'intégrale de Young qui donne notamment une condition optimale pour intégrer deux fonctions hölderiennes l'une contre l'autre. Cela me permet de faire une introduction vers la théorie des chemins rugueux qui traite en particulier le cas limite de l'intégration stochastique qui est hors de portée des notions précédentes.


Compléments agrégation

Algèbres de dimension finie

Ces notes décrivent le contenu de 6 heures de compléments d’algèbre qui accompagent la correction d’un sujet de Mathématiques Générales de l’agrégation. Elles portent sur la notion d’algèbre de dimension finie à travers les principaux exemples du programme que sont l’algèbre des polynômes à une indéterminée, les extensions de corps et la réduction d'endomorphismes.


Développements d'agrégation

Ces développements sont ceux que j'ai préparé pour mes oraux de l'agrégation 2017, ils peuvent en particulier contenir des erreurs.