Lemme de Morse

Lemme. Soit $A_0 \in GL_n(\mathbb{R}) \cap \mathscr{S}_n(\mathbb{R})$. Alors il existe un voisinage U de A_0 dans $\mathscr{S}_n(\mathbb{R})$ et une application $\psi: U \to GL_n(\mathbb{R})$ de classe C^1 tels que $\forall A \in U, A = {}^t\psi(A)A_0\psi(A)$. Autrement dit, le changement de base des formes quadratiques dépend localement de manière C^1 de la forme quadratique.

Preuve:

On considère

$$\varphi: \begin{array}{ccc} \mathscr{M}_n(\mathbb{R}) & \to & \mathscr{S}_n(\mathbb{R}) \\ P & \mapsto & {}^t P A_0 P \end{array}.$$

 φ est de classe C^1 car polynomiale et

$$\varphi(I_n + H) = A_0 + A_0 H + {}^t H A_0 + {}^t H A_0 H$$

Donc $d\varphi_I H = A_0 H + {}^t H A_0$. On va maitenant chercher à appliquer le théorème d'inversion locale, cependant $d\varphi_I$ n'est pas inversible :

$$d\varphi_I H = 0 \quad \iff \quad A_0 H = -^t H A_0$$
$$\iff \quad A_0 H \in \mathscr{A}_n$$

On va utiliser la décomposition suivante

$$\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R}) = A_0^{-1} \mathcal{S}_n(\mathbb{R}) \oplus A_0^{-1} \mathcal{A}_n(\mathbb{R})$$

car A_0 est inversible. On pose $\Phi=\varphi|_{A_0^{-1}\mathscr{S}_n(\mathbb{R})}$. Alors $d_{I_n}\Phi$ est injective donc inversible car $\dim\left(A_0^{-1}\mathscr{S}_n(\mathbb{R})\right)=\dim\left(\mathscr{S}_n(\mathbb{R})\right)$. D'après le théorème d'inversion locale, il existe un voisinage U de $\Phi(I_n)=A_0$ dans $\mathscr{S}_n(\mathbb{R})$ et $\phi:U\to A_0\mathscr{S}_n(\mathbb{R})\subset\mathscr{M}_n(\mathbb{R})$ de classe C^1 tels que

$$\forall A \in U, \quad (\Phi \circ \psi)(A) = A.$$

De plus, $GL_n(\mathbb{R})$ étant ouvert, on peut supposer $\psi(U) \subset GL_n(\mathbb{R})$ quitte à réduire U.

Théorème. Soient $\Omega \subset \mathbb{R}^n$ un ouvert contenant 0 et $f:\Omega \to \mathbb{R}$ une fonction de classe C^3 telle que f(0)=0. On suppose que $D_0f=0$ et que D_0^2f est de signature (p,n-p). Alors il existe des voisinages U et V de $0 \in \mathbb{R}^n$ et $\varphi: U \to V$ un C^1 -difféomorphisme tels que

$$f(\varphi^{-1}(u)) = u_1^2 + \ldots + u_p^2 - u_{p+1}^2 - \ldots - u_n^2$$

où
$$u = (u_1, ..., u_n) = \varphi(x)$$
.

Preuve:

Par la formule de Taylor avec reste intégral, on a

$$f(x) = \int_0^1 (1-u)^t x \left(D_{ux}^2 f\right) x du = {}^t x Q(x) x$$

avec
$$Q(x) = \int_0^1 (1-u)D_{ux}^2 f du \in \mathscr{S}_n(\mathbb{R}).$$

Par le lemme, il existe un voisinage W de Q(0) dans $\mathscr{S}_n(\mathbb{R})$ et $\psi:W\to GL_n(\mathbb{R})$ de classe C^1 tels que

$$\forall A \in W, \quad A = {}^{t}\psi(A)Q(0)\psi(A).$$

Par continuité de Q, il existe un voisinage U de $0 \in \mathbb{R}^n$ tel que

$$\forall x \in U, \quad Q(x) = {}^{t}\psi(Q(x))Q(0)\psi(Q(x)).$$

D'après le théorème de Sylvester, il existe $P \in GL_n(\mathbb{R})$ telle que

$$\forall x \in U, \quad Q(x) = {}^t\!\psi\!\left(Q(x)\right){}^t\!P\left(\begin{array}{cc} I_p & 0 \\ 0 & -I_{n-p} \end{array}\right) P\psi\!\left(Q(x)\right).$$

On considère alors

$$\varphi: \left| \begin{array}{ccc} U & \to & \mathbb{R}^n \\ x & \mapsto & P\psi \Big(Q(x)\Big)x \end{array} \right.,$$

qui est de classe C^1 et $d_0\varphi(h)=P\psi\Big(Q(0)\Big)h$ donc $d_0\varphi$ est inversible. Par le théorème d'inversion locale, φ est un C^1 -difféomorphisme local et si $u=\varphi(x)$, alors

$$f(\varphi^{-1}(u)) = {}^{t}u \begin{pmatrix} I_{p} & 0 \\ 0 & -I_{n-p} \end{pmatrix} u.$$